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ABSTRACT

Circular multiridge waveguides (CMRW) have

been recently considered for their promise in ap-

plication to tuningless dual mode filters.

We propose an accurate method for characterizing

such structures that is based on a combination of

the Boundary Integral Method, in a form leading

to a standard eigenvalue problem, with a proper

choice of the current distributions on the ridges,

which takes into account the edge effects. The re-

sulting code permits to calculate very accurately

several tens of modes by inverting only once a rea-

sonably small matrix.

INTRODUCTION

The realization of tuningless dual mode filters

requires an appropriate choice of the coupling sec-

tions that must be precisely manufactured [1].

Multiridge circular sections seem to be an ideal

candidate for this purpose and for this reason they

have been recently examined by several researchers

[2], [4], [3], [5], to cite a few among many others.

After careful consideration, we have come to the

conclusion that the most effective method of anal-

ysis for this class of waveguides known to us ap-

pears a further modification of the Boundary In-

tegral Method (BIM) in the formulation proposed

by Conciauro et al. Unlike many other semi-

analytical methods, which generate the eigenval-

ues by a search of the zeros of a determinant,

the unknown eigenvalues arise by the solution of a

classical ezgenvalue problem. This fact makes the

approach very suitable for problems requiring the

calculation of several modes. Moreover, we have
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improved the accuracy of the method by expand-

ing the electric currents on the ridges into a set

of orthonormal polynomials weighted by the cor-

rect edge conditions, result ing from the exact solu-

tion of Maxwell’s equations around the edges [8].

Although such a choice guarantees higher accu-

racy, the evaluation of the integrals of the Green’s

function and the expanding functions is now more

complex, because of the singular behaviour of the

latter near the edges. We have introduced there-

fore a suitable change of variables that eliminates

the singularities. We have also extracted the sin-

gularities of the static part of the Green’s function

and calculated their integrals analytically. The in-

tegrals of the functions thus regularized have then

computed numerically.

OUTLINE OF THE METHOD

The dyadic Green’s function relating the un-

known currents to the electric field into a circular

waveguide is expressed as the sum of a static part

G. and a dynamic one, the latter being a sum of

a solenoidal part G~ and an irrot at ional part Gi.

The static term is known analytically, while the dy-

namic solenoidal is given by a summation of two

very rapidly converging series [6]:

Gd = ZZ ~m
k2

km2(km2– w)
4k(r)#h(r’) +

Lrl
k2

km’z(km’z – W)
e~(r)efl(r’) (1)

Where z +n(r) and em(r) are respectively E and H

eigenvectors of the circular housing and km and k;

the corresponding eigenvalues. The irrotational
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part is also known analytically :

Gz = –& VVg(r, r’) (2)

The reader can be found the complete expression

of the Green’s function in[5]. A fundamental point

is that the eigenvalue k of the structure under

exam only appears in G~ and Gi, G~ containing

only a static contribution. The eigenvalue is deter-

mined by enforcing the vanishing of the tangential

electric field over the contour of each ridge:

<Gs, J>+< G~, J>+< G~, J>=O (3)

For istance, in the E case, we obtain:

(5)

The above system is discretized according to the

Galerkin method, by expanding the unknown cur-

rent J into a set of N basis functions and trun-

cating the series appearing in (5) after the M-th

mode. The result ing eigenvalue problem assumes

the form of a standard (N+ M) x (N+ M) linear

system:

(A+ k2B)X = O (6)

The first N components of the eigenvector X are

the Fourier coefficients of the current associated

to the eigenvalue k, with respect to the set chosen,

while the remaining M components are the am-

plitudes aj of the corresponding field with respect

to the modes of housing, For the sake of brevity

we will detail only the discretization in the single

ridge case (Fig. 1).

TM modes

In order to calculate the TM modes, the un-

known current has been discretized by setting

JZ = wi ~~ bkfk,x~=l Ni = N where:

f:(’) =.f:= 1 1 4’5/~NgkGk(;@
(7)

WI(Z) = W3 = 27/3(1 – Z)–l/S, z = =
a—R

—-J-C1’6(V)f;(y) =/& Nck k
q5-@-A~ (8)

W2(Z) = (1 – yz)–lls, y =
A+

The index i denotes the i-th segment defining

the ridge, G~ and ck are respectively Jacobi and

Gegenbauer polynomials, while N@ Nck are the

corresponding normalization constants [7]. The

use of the above functions guarantees the best ac-

curacy in the description of the unknown currents,

since their behaviour around the edges is implic-

itly taken into account by the weight functions wi.

Unfortunately, the resulting overlapping integrals

are difficult to evaluate analytically and, moreover,

they are not easy to evaluate numerically because

of the singularities. In order to overcome such dif-

ficulties, we have introduced a change of variable

that eliminates the integrable singularities of the

weight functions. This transformation is given by:

x = sin2 u (9)

y = sinv (lo)

After the transformation, the products between

weight functions and differentials (ckr, dy) become:

Wl(x(u)) dx = 2 sin7/3 u cosl/3 u du
(11)

wz(y(v)) dy = COS1/3 ‘u dv

TE modes

This case is rather more difficult than the previ-

ous one. That is due to the following reasons:

1. The problem is vectorial.

2. The form of the static part of the Green’s

function is much more complicated than that

of the TM case [5].

3. The unknown currents, given by Hz, must be

expanded into a set able to describe two pos-

sible different behaviors near the edges [8]:

(a) Hz proportional to J,(1 - ~).

(b) H. proportional to J2/3(1 - ~).

4. the first derivative of the expanding functions

are also involved in the calculation of the static

terms of (6).

In addition, some attention must be payed to the

current about the edge connecting the arc and the

ridge, where the current does not vanish while
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its derivative does. The unknown longitudinal

magnetic field HZ has been expressed in terms

of Gegenbauer polynomials of order 7/6, C1’6 (z)

weighted by a function w = (1 – ,z2)2/3, where

.z = z or g as defined in (7) and (8), depending

upon the discretization subregion, plus a constant

in order to describe the behaviour near the inner

edge discussed above. The log singularities con-

tained in the static part of the Green’s function

were isolated in a standard way and integrated an-

alytically.

RESULTS

We tested the method comparing our results

with those obtained by Vahldieck [4] for the first

eigenvalues of single and multi ridge waveguides,

obtaining results that are indistinguishable from

this. In order to show the accuracy of the tech-

nique and of the discretizat ion, we computed the

even and odd modes of a single ridge penetrating

completely into the circular waveguide, as shown

in Fig. 2. In that case, in fact, the azimuthal

boundary of the ridge collapses down to a point,

making quite hard the computation of the inte-

grals, which involve the singularity of the Green

function; moreover, accuracy depends strongly on

the number of the housing modes as well as on di-

mensions of the ridge. Fig. 3-6 show the excellent

accuracy achieved in the determination of the first

90 even and odd TM and TE modes in the above

critical case, for a ridge angle of 20°

The example was perfomed by taking 9 basis func-

tions over regions 1 and 3, 1 function over region

2 and considering 190 modes of the housings. The

cpu time required was about 120 sec on a Digital

a series 300 for the TM modes and about 600 sec

for the TE ones. A computation of 200 TM eigen-

values for the triple ridge required 400 see, taking

19 basis polynomials for each ridge.

CONCLUSIONS

We present a truly accurate and efficient tech-

nique for the calculation of many modes of the

multiridge circular waveguide, based on a modi-

fied Boundary Integral Method, in a form lead-

ing to an eigenvalue algebraic problem, and on a

proper choice of the basis functions taking into ac-

cout the correct edge conditions. The efficiency of

the algorithm is enforced by a suitable transforma-

tion of the integrand variables so as to eliminate

the singularities of the expanding functions. The

accuracy of the method is tested by analyzing hun-

dred of modes of a sectorial waveguide.
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1. Cross section of a single ridge guide with

the coordinate systems

Fig,
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2. Cross section of the single ridge guide

fully penetrating into the circular waveguide

considered in the numerical example
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Fig. 3. Relative error involved in the calculation

of the first 90 even TM eigenvalues for a single

ridge fully penetrating the circular waveguide
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Fig. 4. Relative error involved in the calculation

of the first 90 odd TM eigenvalues for a single

ridge fully penetrating the circular waveguide
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Fig. 5. Relative error involved in the calculation

of the first 90 even TE eigenvalues for a single

ridge fully penetrating the circular waveguide
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Fig. 6. Relative error involved in the calculation

of the first 90 odd TE eigenvalues for a single

ridge fully penetrating the circular waveguide
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