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ABSTRACT

Circular multiridge waveguides (CMRW) have

been recently considered for their promise in ap-
plication to tuningless dual mode filters.
We propose an accurate method for characterizing
such structures that is based on a combination of
the Boundary Integral Method, in a form leading
to a standard eigenvalue problem, with a proper
choice of the current distributions on the ridges,
which takes into account the edge effects. The re-
sulting code permits to calculate very accurately
several tens of modes by inverting only once a rea-
sonably small matrix.

INTRODUCTION

The realization of tuningless dual mode filters
requires an appropriate choice of the coupling sec-
tions that must be precisely manufactured [1].
Multiridge circular sections seem to be an ideal
candidate for this purpose and for this reason they
have been recently examined by several researchers
[2], [4], [3], [5], to cite a few among many others.
After careful consideration, we have come to the
conclusion that the most effective method of anal-
ysis for this class of waveguides known to us ap-
pears a further modification of the Boundary In-
tegral Method (BIM) in the formulation proposed
by Conciauro et al. Unlike many other semi-
analytical methods, which generate the eigenval-
ues by a search of the zeros of a determinant,
the unknown eigenvalues arise by the solution of a
classical eigenvalue problem. This fact makes the
approach very suitable for problems requiring the
calculation of several modes. Moreover, we have
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improved the accuracy of the method by expand-
ing the electric currents on the ridges into a set
of orthonormal polynomials weighted by the cor-
rect edge conditions, resulting from the exact solu-
tion of Maxwell’s equations around the edges [8].
Although such a choice guarantees higher accu-
racy, the evaluation of the integrals of the Green’s
function and the expanding functions is now more
complex, because of the singular behaviour of the
latter near the edges. We have introduced there-
fore a suitable change of variables that eliminates
the singularities. We have also extracted the sin-
gularities of the static part of the Green’s function
and calculated their integrals analytically. The in-
tegrals of the functions thus regularized have then
computed numerically.

OUTLINE OF THE METHOD

The dyadic Green’s function relating the un-
known currents to the electric field into a circular
waveguide is expressed as the sum of a static part
G; and a dynamic one, the latter being a sum of
a solenoidal part G4 and an irrotational part Gj.
The static term is known analitically, while the dy-
namic solenoidal is given by a summation of two
very rapidly converging series [6]:
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Where z ¢, (r) and e, (r) are respectively E and H
eigenvectors of the circular housing and k,, and k,’n
the corresponding eigenvalues. The irrotational
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part is also known analitically :
G, = L ! 2
= Vg, @

The reader can be found the complete expression
of the Green’s function in[5]. A fundamental point
is that the eigenvalue k of the structure under
exam only appears in Gy and G;, G; containing
only a static contribution. The eigenvalue is deter-
mined by enforcing the vanishing of the tangential
electric field over the contour of each ridge:

<Gy >+< G, I>+< Gy, IJ>=0 (3)

For istance, in the E case, we obtain:

<Gu,I>+Y %iﬁm(r) =0 (4)
m m
km? — k2
— 7 m =< 2Ym(r),J > (5)

The above system is discretized according to the
Galerkin method, by expanding the unknown cur-
rent J into a set of N basis functions and trun-
cating the series appearing in (5) after the M-th
mode. The resulting eigenvalue problem assumes
the form of a standard (N + M) x (N + M) linear
system:

(A+KB)X =0 (6)

The first N components of the eigenvector X are
the Fourier coefficients of the current associated
to the eigenvalue k, with respect to the set chosen,
while the remaining M components are the am-
plitudes a; of the corresponding field with respect
to the modes of housing. For the sake of brevity
we will detail only the discretization in the single
ridge case (Fig.1).

TM modes

In order to calculate the TM modes, the un-
known current has been discretized by setting
o= w; 5 bef, Timy Ni = N where:
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The index i denotes the i-th segment defining
the ridge, Gy and C}, are respectively Jacobi and
Gegenbauer polynomials, while Ny N are the
corresponding normalization constants [7]. The
use of the above functions guarantees the best ac-
curacy in the description of the unknown currents,
since their behaviour around the edges is implic-
itly taken into account by the weight functions w;.
Unfortunately, the resulting overlapping integrals
are difficult to evaluate analytically and, moreover,
they are not easy to evaluate numerically because
of the singularities. In order to overcome such dif-
ficulties, we have introduced a change of variable
that eliminates the integrable singularities of the
weight functions. This transformation is given by:

r = sin®u (9)

= sinv (10)

After the transformation, the products between
weight functions and differentials (dz, dy) become:

wi(z(u)) de = 2sin”/3 u cos™/3 udu

wa(y(v)) dy = cos/Pvdv (11)

TE modes

This case is rather more difficult than the previ-

ous one. That is due to the following reasons:

1. The problem is vectorial.

2. The form of the static part of the Green’s
function is much more complicated than that
of the TM case [5].

3. The unknown currents, given by H,, must be
expanded into a set able to describe two pos-
sible different behaviours near the edges [8]:

(a) H, proportional to Jo(1 — 2=F).
(b) H, proportional to Jy/3(1 — 2=F).

4. the first derivative of the expanding functions
are also involved in the calculation of the static
terms of (6).

In addition, some attention must be payed to the
current about the edge connecting the arc and the
ridge, where the current does not vanish while
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its derivative does. The unknown longitudinal
magnetic field H, has been expressed in terms
of Gegenbauer polynomials of order 7/6, cl/e (2)
weighted by a function w = (1 — 22)%/3, where
z = g or y as defined in (7) and (8), depending
upon the discretization subregion, plus a constant
in order to describe the behaviour near the inner
edge discussed above. The log singularities con-
tained in the static part of the Green’s function
were isolated in a standard way and integrated an-
alytically.

RESULTS

We tested the method comparing our results
with those obtained by Vahldieck [4] for the first
eigenvalues of single and multi ridge waveguides,
obtaining results that are indistinguishable from
this. In order to show the accuracy of the tech-
nique and of the discretization, we computed the
even and odd modes of a single ridge penetrating
completely into the circular waveguide, as shown
in Fig. 2. In that case, in fact, the azimuthal
boundary of the ridge collapses down to a point,
making quite hard the computation of the inte-
grals, which involve the singularity of the Green
function; moreover, accuracy depends strongly on
the number of the housing modes as well as on di-
mensions of the ridge. Fig. 3- 6 show the excellent
accuracy achieved in the determination of the first
90 even and odd TM and TE modes in the above
critical case, for a ridge angle of 20°
The example was perfomed by taking 9 basis func-
tions over regions 1 and 3, 1 function over region
2 and considering 190 modes of the housings. The
cpu time required was about 120 sec on a Digital
« series 300 for the TM modes and about 600 sec
for the TE ones. A computation of 200 TM eigen-
values for the triple ridge required 400 sec, taking
19 basis polynomials for each ridge.

CONCLUSIONS

We present a truly accurate and efficient tech-
nique for the calculation of many modes of the
multiridge circular waveguide, based on a modi-
fied Boundary Integral Method, in a form lead-
ing to an eigenvalue algebraic problem, and on a

proper choice of the basis functions taking into ac-
cout the correct edge conditions. The efficiency of
the algorithm is enforced by a suitable transforma-
tion of the integrand variables so as to eliminate
the singularities of the expanding functions. The
accuracy of the method is tested by analyzing hun-
dred of modes of a sectorial waveguide.
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Fig. 1. Cross section of a single ridge guide with
the coordinate systems

/<\ 20.0°
b

Fig. 2. Cross section of the single ridge guide
fully penetrating into the circular waveguide
considered in the numerical example
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Fig. 3. Relative error involved in the calculation
of the first 90 even TM eigenvalues for a single
ridge fully penetrating the circular waveguide
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Fig. 4. Relative error involved in the calculation
of the first 90 odd TM eigenvalues for a single
ridge fully penetrating the circular waveguide
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Fig. 5. Relative error involved in the calculation
of the first 90 even TE eigenvalues for a single
ridge fully penetrating the circular waveguide
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Fig. 6. Relative error involved in the calculation
of the first 90 odd TE eigenvalues for a single
ridge fully penetrating the circular waveguide
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